我已经解决了这个问题,但无法提出通过所有测试用例的最有效问题。它在 5 个测试用例中超时。
Determine sentences contain all of the words of a phrase
0: chris and jennifer had a fight this morning
1: chris went on a holiday
2: jennifer is in prisonQuery Phrases are
0: chris jennifer
1: jennifer
2: prisonGoal is to find indexes of the matching sentences for each query or -1 if there are no matching sentence exists. Order of words does not matter.
Output :
0
0 2
2
即 第一个查询在句子 0 中有匹配词,第二个查询在句子 0 和 1 中有匹配词,依此类推。
约束
- n: 句子数
- m: 词数
- n, m < 10^4
- 任何句子或查询短语中的单词数在 [1-10] 范围内
- 每个单词最多11个字符
- 没有单词出现在超过 10 个句子中
- 每个单词仅由大小写字母组成
- 每个词必须完全匹配 - 即喜欢和喜欢不匹配。
输入格式:
3
克里斯和詹妮弗今天早上吵架了
克里斯去度假了
詹妮弗在 jail 里
3
克里斯詹妮弗
詹妮弗
jail
每个 3 代表句子或查询的数量。
以下是我试过的...
<强> 1。我的第一个解决方案: 强>
- 为每个句子制作HashMap
- 对于短语中的每个拆分词:
2-1.检查句子 HashMap 中是否存在所有单词
2-2。如果是这样存储索引
2-3。如果所有句子都没有匹配的句子,则存储-1。 - 打印结果
令p = 句子中最大的单词数
令 k = 查询中的最大单词数
大 O 是 O(npk)
public static void textQueries(List<String> sentences, List<String> queries) {
List<Map<String, Integer>> sentenceMaps = createMaps(sentences);
String results = queryMatcher(sentenceMaps, queries);
System.out.println(results);
}
private static String queryMatcher(List<Map<String, Integer>> sentenceMaps, List<String> queries) {
Map<String, Integer> wordCounter = new LinkedHashMap<>();
List<List<String>> results = new ArrayList<List<String>>();
for (String query : queries) {
List<String> result = new ArrayList<>();
for (int j = 0; j < sentenceMaps.size(); j++) {
if (isQueryFound(sentenceMaps.get(j), query, wordCounter)) {
result.add(j + "");
}
}
results.add(result);
}
return generateResultString(results);
}
/*
* StringBuilder used to reduce delays of calling multiple System.out.println();
*/
private static String generateResultString(List<List<String>> results) {
StringBuilder stringBuilder = new StringBuilder();
for (List<String> matchingSentenceIndexes : results) {
if (matchingSentenceIndexes.isEmpty()) {
stringBuilder.append("-1\n");
} else {
resultStringHelper(matchingSentenceIndexes, stringBuilder);
}
//stringBuilder.append("\n");
}
return stringBuilder.toString();
}
/*
* add " " for multiple indexes result
*/
private static void resultStringHelper(List<String> result, StringBuilder stringBuilder) {
for (int i = 0; i < result.size(); i++) {
stringBuilder.append(result.get(i));
if (i < result.size() - 1) {
stringBuilder.append(" ");
} else if (i == result.size() - 1) {
stringBuilder.append("\n");
}
}
}
private static boolean isQueryFound(Map<String, Integer> sentenceMap, String query, Map<String, Integer> wordCounter) {
String[] queryTokens = query.split(" ");
for (String queryToken : queryTokens) {
if (isMoreThan10Sentences(wordCounter, queryToken)) return false;
if (sentenceMap.containsKey(queryToken)) {
wordCounter.put(queryToken, wordCounter.getOrDefault(queryToken, 0) + 1);
} else {
return false;
}
}
return true;
}
private static boolean isMoreThan10Sentences(Map<String, Integer> wordCounter, String token) {
return wordCounter.getOrDefault(token, -1) > 10;
}
private static Map<String, Integer> initMap(String[] tokens) {
Map<String, Integer> map = new LinkedHashMap<>();
for (String token : tokens) {
map.put(token, 0);
}
return map;
}
private static List<Map<String, Integer>> createMaps(List<String> sentences) {
List<Map<String, Integer>> maps = new ArrayList<Map<String,Integer>>();
for (int i = 0; i < sentences.size(); i++) {
String[] tokens = sentences.get(i).split(" ");
maps.add(initMap(tokens));
}
return maps;
}
最近 5 个测试用例超时。
对于小型测试用例,其在线编码服务器上的基准如下:
map 创建时间:9.23954E-4
查询匹配时间:3.85751E-4
map 生成很昂贵。
<强> 2。我的第二次尝试: 强>
类似的逻辑,但应用了并发性,因为该平台最多支持 2 个线程。
多线程在这里完成:
1. Sentence -> Map generation(Concurrent map generation)
2.查询匹配(并发匹配)
public static void textQueries(List<String> sentences, List<String> queries) {
List<Map<String, Integer>> sentenceMaps = createMaps(sentences);
startTime = System.nanoTime();
String results = queryMatcher(sentenceMaps, queries);
System.out.println(results);
private static String queryMatcher(List<Map<String, Integer>> sentenceMaps, List<String> queries) {
List<Future<String>> futures = new ArrayList<Future<String>>();
int threads = Runtime.getRuntime().availableProcessors();
ExecutorService executor = Executors.newFixedThreadPool(threads);
String[] results = new String[threads];
int length = queries.size() / threads;
for (int i = 0; i < threads; i++) {
int queryStart = length * i;
int queryEnd = length * (i+1);
if (i == threads -1 && queries.size() % threads != 0) queryEnd++;
Callable<String> worker = new QueryMatcher(sentenceMaps, queries, queryStart, queryEnd);
Future<String> submit = executor.submit(worker);
futures.add(submit);
}
for (int i = 0; i < futures.size(); i++) {
try {
results[i] = futures.get(i).get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
String returnString = concaString(results);
executor.shutdown();
return returnString;
}
private static String concaString(String[] results) {
StringBuilder stringBuilder = new StringBuilder();
for (int i = 0; i < results.length; i++) {
stringBuilder.append(results[i]);
}
return stringBuilder.toString();
}
private static String generateResultString(List<List<String>> results) {
StringBuilder stringBuilder = new StringBuilder();
for (List<String> matchingSentenceIndexes : results) {
if (matchingSentenceIndexes.isEmpty()) {
stringBuilder.append("-1\n");
} else {
resultStringHelper(matchingSentenceIndexes, stringBuilder);
}
//stringBuilder.append("\n");
}
return stringBuilder.toString();
}
private static void resultStringHelper(List<String> result, StringBuilder stringBuilder) {
for (int i = 0; i < result.size(); i++) {
stringBuilder.append(result.get(i));
if (i < result.size() - 1) {
stringBuilder.append(" ");
} else if (i == result.size() - 1) {
stringBuilder.append("\n");
}
}
}
private static boolean isQueryFound(Map<String, Integer> sentenceMap, String query, Map<String, Integer> wordCounter) {
String[] queryTokens = query.split(" ");
for (String queryToken : queryTokens) {
if (isMoreThan10Sentences(wordCounter, queryToken)) return false;
if (sentenceMap.containsKey(queryToken)) {
wordCounter.put(queryToken, wordCounter.getOrDefault(queryToken, 0) + 1);
} else {
return false;
}
}
return true;
}
private static boolean isMoreThan10Sentences(Map<String, Integer> wordCounter, String token) {
return wordCounter.getOrDefault(token, -1) > 10;
}
private static boolean isQueryFound(Map<String, Integer> sentenceMap, String query) {
String[] queryTokens = query.split(" ");
//Map<String, Integer> duplicateChecker = new LinkedHashMap<String, Integer>();
for (String queryToken : queryTokens) {
if (sentenceMap.containsKey(queryToken)) {
//if (!duplicateChecker(duplicateChecker, sentenceMap, queryToken))
//return false;
} else {
return false;
}
}
return true;
}
/*
* this method checks for the case when there are duplicate words in query
* i.e. sentence containing 2 hello will return false of queries with 3 hello
*/
private static boolean duplicateChecker(Map<String, Integer> duplicateChecker, Map<String, Integer> sentenceMap, String queryToken) {
if (duplicateChecker.containsKey(queryToken)) {
if (duplicateChecker.get(queryToken) == 0) return false;
duplicateChecker.put(queryToken, duplicateChecker.get(queryToken) - 1);
} else {
duplicateChecker.put(queryToken, sentenceMap.get(queryToken) - 1);
}
return true;
}
private static List<Map<String, Integer>> createMaps(List<String> sentences) {
List<Map<String, Integer>> maps = new ArrayList<>();
int threads = Runtime.getRuntime().availableProcessors();
ExecutorService executor = Executors.newFixedThreadPool(threads);
List<Future<List<Map<String, Integer>>>> futures = new ArrayList<Future<List<Map<String, Integer>>>>();
int length = (sentences.size()) / threads;
for (int i = 0; i < threads; i++) {
int start = i * length;
int end = (i+1) * length;
if (i == threads - 1 && sentences.size() % threads != 0) end++;
List<String> splitSentence = new ArrayList(sentences.subList(start, end));
Callable<List<Map<String, Integer>>> worker = new MapMaker(splitSentence);
Future<List<Map<String, Integer>>> submit = executor.submit(worker);
futures.add(submit);
}
for (int i = 0; i < futures.size(); i++) {
try {
for (Map<String, Integer> map : futures.get(i).get()) {
maps.add(map);
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
executor.shutdown();
return maps;
}
private synchronized static Map<String, Integer> initMap(String[] tokens) {
Map<String, Integer> map = new LinkedHashMap<>();
for (String token : tokens) {
map.put(token, 0);
// map.put(token, map.getOrDefault(map.get(token), 1) + 1);
}
return map;
}
public static class MapMaker implements Callable<List<Map<String, Integer>>> {
private List<String> sentences;
@Override
public List<Map<String, Integer>> call() throws Exception {
List<Map<String, Integer>> maps = new ArrayList<Map<String,Integer>>();
for (int i = 0; i < sentences.size(); i++) {
String[] tokens = sentences.get(i).split(" ");
maps.add(initMap(tokens));
}
return maps;
}
public MapMaker(List<String> sentences) {
this.sentences = sentences;
}
}
public static class QueryMatcher implements Callable<String> {
private List<Map<String, Integer>> sentenceMaps;
private List<String> queries;
private int queryStart;
private int queryEnd;
@Override
public String call() throws Exception {
List<List<String>> results = new ArrayList<List<String>>();
for (int i = queryStart; i < queryEnd; i++) {
List<String> result = new ArrayList<>();
String query = queries.get(i);
for (int j = 0; j < sentenceMaps.size(); j++) {
if (isQueryFound(sentenceMaps.get(j), query)) {
result.add(j + "");
}
}
results.add(result);
}
return generateResultString(results);
}
public QueryMatcher(List<Map<String, Integer>> sentenceMaps, List<String> queries, int queryStart, int queryEnd) {
this.sentenceMaps = sentenceMaps;
this.queries = queries;
this.queryStart = queryStart;
this.queryEnd = queryEnd;
}
}
虽然我希望对大型测试用例进行一些加速,但它仍然给了 5 个测试用例超时。
对于小型测试用例,由于创建池的额外开销,它增加了 map 生成时间。
基准时间:
map 时间:0.007669489
查询匹配时间:3.22923E-4
<强> 3。我的第三个解决方案——用 C++ 编写上述代码 强>
我怀疑是不是Java导致了超时。
该平台实际上为 C++ 提供了更短的计算时间,所以令我惊讶的是,它仍然提供了相同的 5 次超时。
<强> 4。我的第四种方法正则表达式, 强>
我知道它会更慢,但我还是徒劳地尝试了。 Big O 在这里实际上比较慢,因为我需要按单词对每个句子进行排序以避免 n!正则表达式的排列...
public static void textQueries(List<String> sentences, List<String> queries) {
stringSort(sentences);
stringSort(queries);
StringBuilder stringBuilder = new StringBuilder();
boolean isExist = false;
for (int index = 0; index < queries.size(); index++) {
String query = queries.get(index);
isExist = false;
for (int i = 0; i < sentences.size(); i++) {
if (Matcher(buildNaturalLanguage(query), sentences.get(i))) {
stringBuilder.append(i + " ");
isExist = true;
}
}
if (!isExist) stringBuilder.append("-1");
if (index != queries.size() - 1) stringBuilder.append("\n");
}
System.out.println(stringBuilder.toString());
}
private static void stringSort(List<String> strings) {
for (int i = 0; i < strings.size(); ++i) {
String string = strings.get(i);
String[] stringParts = string.split(" ");
StringBuilder stringBuilder = new StringBuilder();
Arrays.sort(stringParts);
for (int j = 0; j < stringParts.length; j++) {
stringBuilder.append(stringParts[j] + " ");
}
strings.set(i, stringBuilder.toString()); // sure I made it back to string for code cleaness but you can return String[] for efficiency.. But only minor improvement.
}
}
private static String buildNaturalLanguage(String query) {
// System.out.println("query " + query);
String[] stringParts = query.split(" ");
String regular = "(([a-zA-Z])*(\\s))*";
for (String word : stringParts) {
regular += word + "(\\s(([a-zA-Z])*(\\s))*)";
}
return regular;
}
private static boolean Matcher(String regular, String sentence) {
Pattern p = Pattern.compile(regular);
Matcher m = p.matcher(sentence);
return m.find();
}
结果: 不仅超时,它还以某种方式导致 2 个额外的未公开测试用例出错(错误答案)。我不知道为什么......
Ω(nm^2 + plogp)..假设正则表达式匹配是 O(m)
我只能想到在运行主要算法之前过滤一些查询或句子的可能性? (约束:每个单词最多匹配 10 个)。
然而,我的第一个和第二个解决方案仍然实现了这个约束检查部分。因此可能需要更智能的过滤。
问题是我认为 BCR - 最好的可能比率是 O(MNP),您仍然需要检查每个查询和句子,如果不使用正则表达式,还需要拆分它们。
我完全迷失在这里,我怎样才能真正提高速度呢?
非常感谢。
请您参考如下方法:
维护 HashMap
这将映射 String
s 至 Set<Int>
.我们的想法是跟踪给定单词出现在哪些句子中。我们使用集合而不是数组来支持高效地计算两个集合的交集。
对于每个输入句子:
- 将其分词成词,并将当前句子的索引添加到当前分词对应的Set中。
对于每个查询短语:
- 将其标记为单词。
- 查询每个词对应的索引集
- 取所有这些集合的交集。
时间复杂度:鉴于每个句子中有 10 个单词,构建 HashMap 的成本为 O(10N log N)。每个查询的成本是 O(10 * log(N))。