一、大数据性能调优的本质

编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论做什么类型的编程,最终思考的都是硬件方面的问题!最终思考都是在一秒、一毫秒、甚至一纳秒到底是如何运行的,并且基于此进行算法实现和性能调优,最后都是回到了硬件!

在大数据性能的调优,它的本质是硬件的调优!即基于 CPU(计算)、Memory(存储)、IO-Disk/ Network(数据交互) 基础上构建算法和性能调优!我们在计算的时候,数据肯定是存储在内存中的。磁盘IO怎么去处理和网络IO怎么去优化。

二、spark性能调优要点分析

在大数据性能本质的思路上,我们应该需要在那些方面进行调优呢?比如:

      1、并行度

      2、压缩

      3、序列化

      4、数据倾斜

      5、JVM调优 (例如 JVM 数据结构化优化)

      6、内存调优

      7、Task性能调优 (例如包含 Mapper 和 Reducer 两种类型的 Task)

      8、shuffle网络调优(例如小文件合并)

      9、RDD算子调优(例如RDD复用,自定义RDD)

     10、数据本地性

     11、容错调优

     12、参数调优

大数据最怕的就是数据本地性(内存中)和数据倾斜或者叫数据分布不均衡、数据转输,这个是所有分布式系统的问题!数据倾斜其实是跟你的业务紧密相关的。所以调优 Spark 的重点一定是在数据本地性和数据倾斜入手。

     1、资源分配和使用:你能够申请多少资源以及如何最优化的使用计算资源

     2、关发调优:如何基于 Spark 框架内核原理和运行机制最优化的实现代码功能

     3、Shuffle调优:分布式系统必然面临的杀手级别的问题

     4、数据倾斜:分布式系统业务本身有数据倾斜

三、spark资源使用原理流程

这是一张来至于官方的经典资源使用流程图,这里有三大组件,第一部份是 Driver 部份,第二就是具体处理数据的部份,第三就是资源管理部份。这一张图中间有一个过程,这表示在程序运行之前向资源管理器申请资源。在实际生产环境中,Cluster Manager 一般都是 Yarn 的 ResourceManager,Driver 会向 ResourceManager 申请计算资源(一般情况下都是在发生计算之前一次性进行申请请求),分配的计算资源就是 CPU Core 和 Memory,我们具体的 Job 里的 Task 就是基于这些分配的内存和 Cores 构建的线程池来运行 Tasks 的。

当然在 Task 运行的过程中会大量的消耗内存,而Task又分为 Mapper 和 Reducer 两种不同类型的 Task,也就是 ShuffleMapTask 和 ResultTask 两种类型,这类有一个很关建的调优点就是如何对内存进行使用。在一个 Task 运行的时候,默应会占用 Executor 总内存的 20%,Shuffle 拉取数据和进行聚合操作等占用了 20% 的内存,剩下的大概有 60% 是用于 RDD 持久化 (例如 cache 数据到内存),Task 在运行时候是跑在 Core 上的,比较理想的是有足够的 Core 同时数据分布比较均匀,这个时候往往能够充分利用集群的资源。 

核心参数调优如下:

num-executors 
executor-memory 
executor-cores 
driver-memory 
spark.default.parallelizm 
spark.storage.memoryFraction 
spark.shuffle.memoryFraction
  • num-executors:该参数一定会被设置,Yarn 会按照 Driver 的申请去最终为当前的 Application 生产指定个数的 Executors,实际生产环境下应该分配80个左右 Executors 会比较合适呢。

  • executor-memory:这个定义了每个 Executor 的内存,它与 JVM OOM 紧密相关,很多时候甚至决定了 Spark 运行的性能。实际生产环境下建义是 8G 左右,很多时候 Spark 运行在 Yarn 上,内存占用量不要超过 Yarn 的内存资源的 50%。

  • executor-cores:决定了在 Executors 中能够并行执行的 Tasks 的个数。实际生产环境下应该分配4个左右,一般情况下不要超过 Yarn 队列中 Cores 总数量的 50%。

  • driver-memory:默应是 1G

  • spark.default.parallelizm:并行度问题,如果不设置这个参数,Spark 会跟据 HDFS 中 Block 的个数去设置这一个数量,原理是默应每个 Block 会对应一个 Task,默应情况下,如果数据量不是太多就不可以充份利用 executor 设置的资源,就会浪费了资源。建义设置为 100个,最好 700个左右。Spark官方的建义是每一个 Core 负责 2-3 个 Task。 

  • spark.storage.memoryFraction:默应占用 60%,如果计算比较依赖于历史数据则可以调高该参数,当如果计算比较依赖 Shuffle 的话则需要降低该比例。

  • spark.shuffle.memoryFraction:默应占用 20%,如果计算比较依赖 Shuffle 的话则需要调高该比例。

四、spark更高性能的算子

      Shuffle 分开两部份,一个是 Mapper 端的Shuffle,另外一个就是 Reducer端的 Shuffle,性能调优有一个很重要的总结就是尽量不使用 Shuffle 类的算子,我们能避免就尽量避免,因为一般进行 Shuffle 的时候,它会把集群中多个节点上的同一个 Key 汇聚在同一个节点上,例如 reduceByKey。然后会优先把结果数据放在内存中,但如果内存不够的话会放到磁盘上。Shuffle 在进行数据抓取之前,为了整个集群的稳定性,它的 Mapper 端会把数据写到本地文件系统。这可能会导致大量磁盘文件的操作。如何避免Shuffle可以考虑以下:

  1. 采用 Map 端的 Join (RDD1 + RDD2 )先把一个 RDD1的数据收集过来,然后再通过 sc.broadcast( ) 把数据广播到 Executor 上;

  2. 如果无法避免Shuffle,退而求其次就是需要更多的机器参与 Shuffle 的过程,这个时候就需要充份地利用 Mapper 端和 Reducer 端机制的计算资源,尽量使用 Mapper 端的 Aggregrate 功能,e.g. aggregrateByKey 操作。相对于 groupByKey而言,更倾向于使用 reduceByKey( ) 和 aggregrateByKey( ) 来取代 groupByKey,因为 groupByKey 不会进行 Mapper 端的操作,aggregrateByKey 可以给予更多的控制。

  3. 如果一批一批地处理数据来说,可以使用 mapPartitions( ),但这个算子有可能会出现 OOM 机会,它会进行 JVM 的 GC 操作!

  4. 如果进行批量插入数据到数据库的话,建义采用foreachPartition( ) 。

  5. 因为我们不希望有太多的数据碎片,所以能批量处理就尽量批量处理,你可以调用 coalesce( ) ,把一个更多的并行度的分片变得更少,假设有一万个数据分片,想把它变得一百个,就可以使用 coalesce( )方法,一般在 filter( ) 算子之后就会用 coalesce( ),这样可以节省资源。

  6. 官方建义使用 repartitionAndSortWithPartitions( )

  7. 数据进行复用时一般都会进行持久化 persisit( )

  8. 建义使用 mapPartitionWithIndex( )

  9. 也建义使用 tree 开头的算子,比如说 treeReduce( ) 和 treeAggregrate( )

总结

大数据必然要思考的核心性能问题不外乎 CPU 计算、内存管理、磁盘和网络IO操作,这是无可避免的,但是可以基于这个基础上进行优化,思考如何最优化的使用计算资源,思考如何在优化代码,在代码层面上防避坠入性能弱点;思考如何减少网络传输和思考如何最大程度的实现数据分布均衡。

在资源管理调优方面可以设置一些参数,比如num-executors、executor-memory、executor-cores、driver-memory、spark.default.parallelizm、spark.storage.memoryFraction、spark.shuffle.memoryFraction

Shuffle 所导致的问题是所有分布式系统都无法避免的,但是如何把 Shuffle 所带来的性能问题减少最低,是一个很可靠的优化方向。Shuffle 的第一阶段即Mapper端在默应情况下会写到本地,而reducer通过网络抓取的同一个 Key 在不同节点上都把它抓取过来,内存可能不够,不够的话就写到磁盘中,这可能会导致大量磁盘文件的操作。在实际编程的时候,可以用一些比较高效的RDD算子,例如 reduceByKey、aggregrateByKey、coalesce、foreachPartition、repartitionAndSortWithPartitions。

发布评论

分享到:

IT虾米网

微信公众号号:IT虾米 (左侧二维码扫一扫)欢迎添加!

spark性能调优(二) 彻底解密spark的Hash Shuffle详解
你是第一个吃螃蟹的人
发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。